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Random input patterns induce a partition of the coupling space of feedforward neural networks into different
cells according to the generated output sequence. For the perceptron this partition forms a random multifractal
for which the spectrum f(a) can be calculated analytically using the replica trick. A phase transition in the
multifractal spectrum corresponds to the crossover from percolating to nonpercolating cell sizes. Instabilities of
negative moments are related to the Vapnik-Chervonenkis (VC) dimension [Theor. Prob. Appl. 16, 264 (1971)].

PACS number(s): 87.10.+¢, 02.50.Cw, 64.60.Ak

Multifractal concepts were originally introduced in the
context of developed turbulence [1] and chaotic dynamical
systems [2] and have become since then a standard tool to
analyze physical systems with richer structure than that in-
duced by dilation symmetry alone (for reviews see [3]). Con-
trary to simple scale invariant situations as provided, e.g., by
systems at second order phase transitions that can be classi-
fied with the help of a few critical exponents only, the de-
scription of multifractals requires a full range of scaling ex-
ponents specified by a continuous function f(«). The reason
for this multitude of exponents is the fact that different mo-
ments of the underlying probability distribution are domi-
nated by different fractal subsets of the system.

The simplest examples of multifractal measures are pro-
vided by deterministic recursive constructions such as the
two-scale Cantor set [3]. However, many multifractals ob-
served experimentally as, e.g., in diffusion limited aggrega-
tion, are generated by random processes. It is therefore of
general interest to analyze simple models of random systems
that exhibit multifractality [4]. A particularly simplg case is
. provided by fractals on which a measure of constant density
is distributed. The multifractal properties are then of purely
geometrical origin and characterize the fractal support itself
[5].

In the present paper we show that the coupling space of
simple feedforward neural networks storing random input-
output mappings displays multifractality. The corresponding
spectrum f(«) can be determined explicitly using the replica
trick. On the one hand, these systems may hence serve as
examples to test the properties of random multifractals. On
the other hand, the multifractal analysis of the cell structure
imposed on the coupling space by the random input-output
mappings refines and extends the standard statistical me-
chanics analysis of the storage [6] and generalization prop-
erties [7] of these systems.

We consider a perceptron with N input bits &==*1,
i=1,...,N, and one output o= *1. The output is given as
the sign of the scalar product between the input and the cou-
pling vector J of the perceptron, i.e.,

o= sgn(J§= sgn(Z Jig,-). (1)

We will mainly consider the case in which the J-vector is
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binary, J;= * 1 (Ising perceptron) and defer the discussion of
continuous couplings (spherical perceptron) to the end of this
paper.

Given p = yN different input patterns & we can associate
with every pattern a hyperplane perpendicular to it that cuts
the coupling space of the perceptron into two halves accord-
ing to the possible output o#= *1. If the inputs are gener-
ated independently at random we will hence find a random
partition of the coupling space into at most 27 cells. These
cells can be labeled by their output sequences o={o*} and
their size gives the probability P(o) that, for given input
sequence {&*}, the outputs o are generated by a randomly
chosen coupling vector J. It is well known that the storage
and generalization properties of the neural network are
closely related to this probability distribution [8—-11].

The natural scale for the cell sizes in the thermodynamic
limit N— o0 is e=2"". Due to the random orientation of the
hyperplanes, however, the cells will differ significantly in
size from each other. To describe these fluctuations quantita-
tively we introduce the crowding index a(o) by

P(o)=¢e*? 2)

and characterize P( o) by its moments
(PH=2 PU(0)=e"? 3)

with the mass exponent 7(g). As usual [1,2] the multifractal
spectrum f(«) is given by the Legendre transform of 7(g):

f(a)=mqin [ag—7(q)] 4)

and ./ (&)= €/(® gives the number of cells of size €®.

For large N we expect that 7 and f become self-
averaging, i.e., they will no longer depend on the choice of
the random inputs &“. We can therefore calculate 7(g) from

N—wx

1
7(g)=— lim m<< 1n20 Pq(0)>> (5)

where (()) denotes the average over the distribution of the
input patterns which we take as
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Aen =11 [Fecgt+1)+580&4~1)]. (6) _
bH 06 8
The calculation of 7(q) uses a variant of the replica trick 03
introduced recently by Monasson and O’Kane [12] and will | N ol
only be sketched. Starting with the definition of P( o) g, - i .
, VR
Po)=3 TI aonse ) N
J wu=1
with the theta function #(x)=1 if x=0 and 6(x) =0 else we 0
introduce one replica index « running from 1 to g in order to 0 o 1

represent the gth power of P and another replica index a
running from 1 to n to represent the In in Eq. (5) in the usual
way [13]. We then find

7(q)=— lim
N—x

X lim 3[<<2 > 1 e<af,fwgﬂ)>>—1} ®)

noo gZ Je¥ mea,a

N In2

Next the average is performed and the resulting expression is
written as a saddle-point integral over the elements of the
overlap matrix

1
Quf=y2 TP ©)

and its conjugate QZ‘E . To solve the remaining extremaliza-
tion problem we assume replica symmetry (RS) which in the
present problem is given by the ansatz [12]

Q:f=0, if a=b,a#p,
(10)
Q2f=0Q, if a#b,

and similarily for Q;’f . Hence Q; denotes the typical over-
lap between couplings in the same cell (same output vector
o) whereas Q characterizes the overlap between couplings
in different cells. The reliability of the RS ansatz will be
discussed below.
In this way we get
1 ) 2

(q)= 5 extig, 0, 6, ,@0[%—1[1 ~(1-)0:1- 20004

—szO lnf Dzlcoshq(\/Ql—ngl‘*’\/—Qi—oZo)

VO 1= Qot1+ V0ot
~')/j D1y 1n2th1Hq( G

(11)

where Dx=exp(—x%/2)/ 27 and H(y) = [y Dx. Inspection
of the saddle-point equations resulting from (11) reveals that
these are always fulfilled for Q0=Q0=0. Physically this is
due to the symmetry (J,o)«(—J,— o) in Eq. (1) which

FIG. 1. Multifractal spectrum f(«) characterizing the cell struc-
ture of the coupling space of an Ising perceptron classifying yN
random input patterns for y=0.2, 0.4, 0.833, and 1.245 (from left
to right). The diamonds mark the region of validity of the replica
symmetric ansatz. The dot denotes the location of the instability of
negative moments for y=0.4 (see text). The histograms are exact
enumeration results for N=30, p=6; N=30, p=12; and N=24,
p =20 respectively. The inset shows a finite size analysis of f(ag)
for y=0.5. The correct value for N— is 0.5, the line describes
the first correction to the saddle point for N <o, and the statistical
error of the numerical results is smaller than the symbol size.

ensures that to every cell there is a “mirror” cell of equal
size. As a consequence Eq. (11) simplifies to

1 0
(q)= EGXtYQl,Q‘l[g—I[l—(l“CI)Ql]

—lnf Dz cosh"(\/Q_lz)

—ylnzfm H’i(%_l”

Extremizing this expression with respect to Q' and Ql nu-
merically and using Eq. (4) we find f(«) as shown in Fig. 1
for different values of the loading parameter y. Also shown
are results from exact enumerations up to N=230. The inset
gives a finite size analysis demonstrating very good agree-
ment between the analytical results and the extrapolation
from the numerical data.

For small values of y the f(«) curves have the typical
bell-shaped form. The two zeros «,,;,(y) and a,,,(v)
specify the largest [14] and the smallest cell occurring
with nonzero probability respectively. Moreover aq(7y)
=argmaxf(«) defines the size of the typical cell and
f(ag)= "y indicates that for small -y all possible cells do in-
deed occur. Finally, from the normalization of P( o) we find
for all vy that 7(¢=1)=0. This implies that the f(a) curves
are all tangent to the line f= «. We denote the abscissa of the
tangential point by a(y). Cells of size €*1 contribute most
to the coupling space.

For larger values of vy it becomes important that due to
J;=*1 the coupling space is discrete and the cell sizes must
always be multiples of €. Values of « larger than 1 thus
correspond to empty cells. For ag=1 the typical cell is
empty and hence ay(7y.)=1 determines the storage capacity

(12)
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v. [11]. From the figure we infer .=0.833. Similarly
a;=1 indicates that the coupling space is dominated from
cells containing a single J-vector only. Therefore
a;(yg)=1 defines the threshold to perfect generalization
[11] and the results shown in the figure yield y,=1.245.

Both the values for . and 7y, have been derived previ-
ously [15] and in fact a(y)=0 is similar to the zero-entropy
condition used to derive them. However, it should be empha-
sized that the justification of the zero-entropy condition
within the traditional Gardner approach requires one-step
replica symmetry breaking (RSB). On the contrary, in the
present approach not only does RS already give the correct
results but anticipating that Q= Q0= 0 for a1 <a<a (see
below) we can even go without the replica index a and cal-
culate 7(g) as an annealed average over the input distribu-
tion (6). This is technically much simpler than a one-step
RSB calculation and may open the way to a more detailed
analysis of multilayer networks also [16].

We now turn to the reliability of the RS results with
Q,=0. First of all we note that from (4) and (3) f(«) is the
entropy of the discrete spin system o [with Hamiltonian
a(0)] and must therefore be non-negative. However, before
f becomes negative we find for both positive and negative
q a transition to a saddle point with QO,Q0>O at values of

q=q- given by

Va=lg.—1|10,(1-0D[1—-(1-¢)0,].  (13)

Since Q| gives the typical overlap between J-vectors belong-
ing to different cells the analogy with the spin glass problem
suggests that Q4> 0 signals broken ergodicity. This means in
the present context that moments of P(o) with g>q, or
g<q . are dominated by cells that no longer percolate in
coupling space. Whereas for g . >¢g>q _ all dominating cells
can be reached from one another without entering cells of a
different size this is no longer true for the remaining values
of g. Note that the transition occurs always outside the in-
terval (ag,ag).

We have also investigated the transverse stability of the
RS saddle point using standard techniques [17]. We find that
at g=q. the RS saddle point becomes unstable also with
respect to RSB and this instability is not removed by
Q>0 [18]. On the other hand, we believe that our qualita-
tive picture of a percolation transition at g, remains valid
also in a RSB solution.

We have obtained similar results for the spherical percep-
tron (see also [14]). For small values of y the f(«) curves
are almost identical to those of the Ising perceptron. Since
there is now no smallest possible size of a cell the storage
capacity y.=2 [9,6] has to be determined from
ag(y.)— . For y= 1, the spectrum f(«) is hence monoto-
nously increasing and the asymptotic value of f for a—
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remains smaller than vy since a growing fraction of classifi-
cations cannot be realized. The generalization properties of
the spherical perceptron are characterized by the information
dimension f(«a;) of the multifractal cell structure which is
related to the volume 27 of the version space by 7= €/(®1)
[11]. The longitudinal and transverse instability of the RS
solution with Q=0 occurs again at the same values g . of
q given now by Va=|g.—1]|Q;.

Finally we find from the RS results for both the Ising and
the spherical perceptron an instability (P9)— of negative
moments if g<<q, where q.,=1—1/a for a<1 and g.=0
for @>1. The corresponding end point of the f(«a) curve for
v=0.4 is marked by a dot in the figure; for y=0.2 it occurs
for f<0. These divergencies are due to the possibility of
empty cells with P(o)=0. For small values of y we find
q.<gq_ and the instability lies outside the region of validity
of RS. In this case it is therefore necessary to include RSB to
elucidate the nature of this divergence and we speculate that
this is due to the fact that empty cells can only occur due to
very rare realizations of the input patterns & [19]. For y
larger than a threshold value V¢, however, the instability
occurs within the region of validity of RS. Then the prob-
ability of empty cells can no longer be exponentially small in
N. The instability of negative moments is hence related to
the Vapnik-Chervonenkis dimension of the neural network,
more precisely y'C determined from gq.(y"¢)=q_(¥"°)
gives an upper bound on the VC dimension dy [20]. For the
spherical perceptron we find in this way the well known
exact result y"“=1 [9]. For the Ising perceptron we get
similarly yV¢=0.557. The VC dimension of the Ising per-
ceptron is not known up to now. One can show that it is at
least 0.5 [21] and there is numerical evidence that it is indeed
0.5 for large N [22]. Our RS upper bound is somewhat larger
which may indicate that there is a discontinuous transition to
RSB for the Ising perceptron. This question is currently un-
der study.

In conclusion we have shown that a multifractal analysis
of the phase space of neural networks allows one to refine
the standard statistical mechanics approach to learning and
generalization substantially. The instabilities found in the
spectrum f(«) can be related to physical properties of these
systems. We hope that these results may serve as a guide to
understanding similar transitions in other examples of ran-
dom multifractals. Moreover, it would be interesting to see
whether there are other examples for percolation transitions
in high-dimensional spaces that can be detected from a bi-
furcation of an overlap parameter Q.
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